skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fogler, Michael M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering. Spacetime SPP interference patterns recorded in terahertz (THz) frequency range provided unobstructed readouts of the group velocity and lifetime of polariton that can be directly mapped onto the electronic spectral weight and the relaxation rate. Our data uncovered prominent departures of the electron dynamics from the predictions of the conventional Fermi-liquid theory. The deviations are particularly strong when the densities of electrons and holes are approximately equal. The proposed spacetime imaging methodology can be broadly applied to probe the electrodynamics of quantum materials. 
    more » « less
  2. Polaritons are light-matter quasiparticles that govern the optical response of quantum materials at the nanoscale, enabling on-chip communication and local sensing. Here, we report Landau-phonon polaritons (LPPs) in magnetized charge-neutral graphene encapsulated in hexagonal boron nitride (hBN). These quasiparticles emerge from the interaction of Dirac magnetoexciton modes in graphene with the hyperbolic phonon polariton modes in hBN. Using infrared magneto-nanoscopy, we reveal the ability to completely halt the LPP propagation in real space at quantized magnetic fields, defying the conventional optical selection rules. The LPP-based nanoscopy also tells apart two fundamental many-body phenomena: the Fermi velocity renormalization and field-dependent magnetoexciton binding energies. Our results highlight the potential of magnetically tuned Dirac heterostructures for precise nanoscale control and sensing of light-matter interaction. 
    more » « less
  3. Nodal-line metals allow hyperbolic infrared waveguiding through the bulk with band structure–engineered loss reduction. 
    more » « less
  4. Efficient control of photons is enabled by hybridizing light with matter. The resulting light-matter quasi-particles can be readily programmed by manipulating either their photonic or matter constituents. Here, we hybridized infrared photons with graphene Dirac electrons to form surface plasmon polaritons (SPPs) and uncovered a previously unexplored means to control SPPs in structures with periodically modulated carrier density. In these periodic structures, common SPPs with continuous dispersion are transformed into Bloch polaritons with attendant discrete bands separated by bandgaps. We explored directional Bloch polaritons and steered their propagation by dialing the proper gate voltage. Fourier analysis of the near-field images corroborates that this on-demand nano-optics functionality is rooted in the polaritonic band structure. Our programmable polaritonic platform paves the way for the much-sought benefits of on-the-chip photonic circuits. 
    more » « less